Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Geoscientific Model Development ; 16(11):3313-3334, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-20245068

Résumé

Using climate-optimized flight trajectories is one essential measure to reduce aviation's climate impact. Detailed knowledge of temporal and spatial climate sensitivity for aviation emissions in the atmosphere is required to realize such a climate mitigation measure. The algorithmic Climate Change Functions (aCCFs) represent the basis for such purposes. This paper presents the first version of the Algorithmic Climate Change Function submodel (ACCF 1.0) within the European Centre HAMburg general circulation model (ECHAM) and Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model framework. In the ACCF 1.0, we implement a set of aCCFs (version 1.0) to estimate the average temperature response over 20 years (ATR20) resulting from aviation CO2 emissions and non-CO2 impacts, such as NOx emissions (via ozone production and methane destruction), water vapour emissions, and contrail cirrus. While the aCCF concept has been introduced in previous research, here, we publish a consistent set of aCCF formulas in terms of fuel scenario, metric, and efficacy for the first time. In particular, this paper elaborates on contrail aCCF development, which has not been published before. ACCF 1.0 uses the simulated atmospheric conditions at the emission location as input to calculate the ATR20 per unit of fuel burned, per NOx emitted, or per flown kilometre.In this research, we perform quality checks of the ACCF 1.0 outputs in two aspects. Firstly, we compare climatological values calculated by ACCF 1.0 to previous studies. The comparison confirms that in the Northern Hemisphere between 150–300 hPa altitude (flight corridor), the vertical and latitudinal structure of NOx-induced ozone and H2O effects are well represented by the ACCF model output. The NOx-induced methane effects increase towards lower altitudes and higher latitudes, which behaves differently from the existing literature. For contrail cirrus, the climatological pattern of the ACCF model output corresponds with the literature, except that contrail-cirrus aCCF generates values at low altitudes near polar regions, which is caused by the conditions set up for contrail formation. Secondly, we evaluate the reduction of NOx-induced ozone effects through trajectory optimization, employing the tagging chemistry approach (contribution approach to tag species according to their emission categories and to inherit these tags to other species during the subsequent chemical reactions). The simulation results show that climate-optimized trajectories reduce the radiative forcing contribution from aviation NOx-induced ozone compared to cost-optimized trajectories. Finally, we couple the ACCF 1.0 to the air traffic simulation submodel AirTraf version 2.0 and demonstrate the variability of the flight trajectories when the efficacy of individual effects is considered. Based on the 1 d simulation results of a subset of European flights, the total ATR20 of the climate-optimized flights is significantly lower (roughly 50 % less) than that of the cost-optimized flights, with the most considerable contribution from contrail cirrus. The CO2 contribution observed in this study is low compared with the non-CO2 effects, which requires further diagnosis.

2.
Bulletin of the American Meteorological Society ; 104(3):660-665, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2305722

Résumé

The successes of YOPP from the presentations and keynote presentations included * a better understanding of the impact of key polar measurements (radiosondes and space-based instruments such as microwave radiometers), and recent advancements in the current NWP observing system, achieved through coordinated OSEs in both polar regions (e.g., Sandu et al. 2021);* enhanced understanding of the linkages between Arctic and midlatitude weather (e.g., Day et al. 2019);* advancements in the atmosphere–ocean–sea ice and atmosphere–land–cryosphere coupling in NWP, and in assessing and recognizing the added value of coupling in Earth system models (e.g., Bauer et al. 2016);* deployment of tailored polar observation campaigns to address yet-unresolved polar processes (e.g., Renfrew et al. 2019);* progress in verification and forecasting techniques for sea ice, including a novel headline score (e.g., Goessling and Jung 2018);* advances in process understanding and process-based evaluation with the establishment of the YOPPsiteMIP framework and tools (Svensson 2020);* better understanding of emerging societal and stakeholder needs in the Arctic and Antarctic (e.g., Dawson et al. 2017);and * innovative transdisciplinary methodologies for coproducing salient information services for various user groups (Jeuring and Lamers 2021). The YOPP Final Summit identified a number of areas worthy of prioritized research in the area of environmental prediction and services for the polar regions: * coupled atmosphere, sea ice, and ocean models with an emphasis on advanced parameterizations and enhanced resolution at which critical phenomena start to be resolved (e.g., ocean eddies);* improved definition and representation of stable boundary layer processes, including mixed-phase clouds and aerosols;incorporation of wave–ice–ocean interactions;* radiance assimilation over sea ice, land ice, and ice sheets;understanding of linkages between polar regions and lower latitudes from a prediction perspective;* exploring the limits of predictability of the atmosphere–cryosphere–ocean system;* an examination of the observational representativeness over land, sea ice, and ocean;better representation of the hydrological cycle;and * transdisciplinary work with the social science community around the use of forecasting services and operational decision-making to name but a few. The presentations and discussions at the YOPP Final Summit identified the major legacy elements of YOPP: the YOPPsiteMIP approach to enable easy comparison of collocated multivariate model and observational outputs with the aim of enhancing process understanding, the development of an international and multi-institutional community across many disciplines investigating aspects of polar prediction and services, the YOPP Data Portal3 (https://yopp.met.no/), and the education and training delivered to early-career polar researchers. Next steps Logistical issues, the COVID-19 pandemic, but also new scientific questions (e.g., the value of targeted observations in the Southern Hemisphere), as well as technical issues emerging toward the end of the YOPP Consolidation Phase, resulted in the decision to continue the following three YOPP activities to the end of 2023: (i) YOPP Southern Hemisphere (YOPP-SH);(ii) Model Intercomparison and Improvement Project (MIIP);of which YOPPSiteMIP is a critical element;and (iii) the Societal, Economics and Research Applications (PPP-SERA) Task Team.

3.
Erdkunde ; 76(3):199-226, 2022.
Article Dans Anglais | CAB Abstracts | ID: covidwho-2294340

Résumé

Arctic-alpine ecosystems are considered hot-spots of environmental change, with rapidly warming conditions causing massive alterations in vegetational structure. These changes and their environmental controls are highly complex and variable across spatial and temporal scales. Yet, despite their numerous implications for the global climate system, the underlying physiological processes and mechanisms at the individual plant scale are still little explored. Using hourly recordings of shrub stem diameter change provided by dendrometers, paired with on-site environmental conditions, enabled us to shed light on these processes. In this way, growth patterns in three widely distributed shrub species were assessed and linked to thermal and hygric conditions. We started our analysis with a close examination of one evergreen species under extreme environmental conditions, followed by a comparison of evergreen and deciduous species, and, finally, a comparative look at growth patterns across local micro-habitats. The results revealed distinct growth strategies, closely linked to species-specific water-use dynamics and cambial rhythms. Within the heterogenous alpine landscape these conditions were mainly attributed to the variation in local micro-habitats, defined by fine-scale topography and consequent variation in snow conditions and exposure. Thus, the overall growth success was mainly controlled by complex seasonal dynamics of soil moisture availability, snow conditions, and associated freeze-thaw cycles. It was therefore in many cases decoupled from governing regional climate signals. At the same time, exceedingly high summer temperatures were limiting shrub growth during the main growing season, resulting in more or less pronounced bimodal growth patterns, indicating potential growth limitation with on-going summer warming. While shrubs are currently able to maximize their growth success through a high level of adaptation to local micro-site conditions, their continued growth under rapidly changing environmental conditions is uncertain. However, our results suggest a high level of heterogeneity across spatial and temporal scales. Thus, broad-scale vegetational shifts can not be explained by a singular driver or uniform response pattern. Instead, fine-scale physiological processes and on-site near-ground environmental conditions have to be incorporated into our understanding of these changes.

4.
Antarctic Science ; 34(3):226-245, 2022.
Article Dans Anglais | ProQuest Central | ID: covidwho-1947151

Résumé

Understanding the success factors underlying each step in the process of biological invasion provides a robust foundation upon which to develop appropriate biosecurity measures. Insights into the processes occurring can be gained through clarifying the circumstances applying to non-native species that have arrived, established and, in some cases, successfully spread in terrestrial Antarctica. To date, examples include a small number of vascular plants and a greater diversity of invertebrates (including Diptera, Collembola, Acari and Oligochaeta), which share features of pre-adaptation to the environmental stresses experienced in Antarctica. In this synthesis, we examine multiple classic invasion science hypotheses that are widely considered to have relevance in invasion ecology and assess their utility in understanding the different invasion histories so far documented in the continent. All of these existing hypotheses appear relevant to some degree in explaining invasion processes in Antarctica. They are also relevant in understanding failed invasions and identifying barriers to invasion. However, the limited number of cases currently available constrains the possibility of establishing patterns and processes. To conclude, we discuss several new and emerging confirmatory methods as relevant tools to test and compare these hypotheses given the availability of appropriate sample sizes in the future.

SÉLECTION CITATIONS
Détails de la recherche